The single chlorophyll a molecule in the cytochrome b6f complex: unusual optical properties protect the complex against singlet oxygen.

نویسندگان

  • Naranbaatar Dashdorj
  • Huamin Zhang
  • Hanyoup Kim
  • Jiusheng Yan
  • William A Cramer
  • Sergei Savikhin
چکیده

The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast optical pump-probe studies of the cytochrome b(6)f complex in solution and crystalline states.

The cytochrome b6f complex of oxygenic photosynthesis contains a single chlorophyll a (Chl a) molecule whose function is presently unknown. The singlet excited state of the Chl a molecule is quenched by the surrounding protein matrix, and thus the Chl a molecule in the b6f complex may serve as an exceptionally sensitive probe of the protein structure. For the first time, singlet excited-state d...

متن کامل

An anomalous distance dependence of intraprotein chlorophyll-carotenoid triplet energy transfer.

In the light-harvesting chlorophyll pigment-proteins of photosynthesis, a carotenoid is typically positioned within a distance of ;4 Å of individual chlorophylls or antenna arrays, allowing rapid triplet energy transfer from chlorophyll to the carotenoid. This triplet energy transfer prevents the formation of toxic singlet oxygen. In the cytochrome b6f complex of oxygenic photosynthesis that co...

متن کامل

Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803.

A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the C...

متن کامل

Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal.

The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product...

متن کامل

b6f-Associated chlorophyll: structural and dynamic contribution to the different cytochrome functions.

Cytochromes bc1/b6f complexes catalyze electron transfer from lipid- to water-soluble carriers in both the respiratory and photosynthetic processes. They contain several common redox cofactors, while a chlorophyll a molecule, the function of which is still enigmatic, is only present in b b6f-type complexes. In this work, we describe a mutagenesis approach aimed at characterizing the role of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2005